Today The Michael J. Fox Foundation (MJFF) announces a program investigating the pathogenesis (development of disease) of Parkinson's: PATH to PD. This ambitious multi-team, $6-million initiative aims to identify molecular/cellular events that may play a role in Parkinson's onset and progression, whether in the presence of environmental exposures, genetic factors and aging.
"The vast diversity of pathways implicated in Parkinson's pathology to date indicates that multiple physiological routes can lead to PD, and these routes may intersect or be temporally dependent," said Todd Sherer, PhD, MJFF CEO. "Through PATH to PD, our Foundation aims to encourage researchers to bring a holistic new approach to bear on refining today's understanding of what Parkinson's is -- so that we can better strategize how to slow or stop the disease."
A Holistic Approach
Parkinson's arises from multiple, complicated gene-environment interactions on the poorly understood background of aging. The past two decades have brought substantial growth in understanding of the disease, in particular a strong appreciation of the role of genetics and the cellular pathways they influence. The emerging research picture of Parkinson's is that of a vast, interwoven network culminating in a disease with great variability in cause, rates of progression, symptomology and treatment responses.
Each PATH to PD-funded research team will receive $2 million over two years to holistically investigate genetics, environment and aging, the most important known contributors to Parkinson's disease:
- Environmental and Genetic Mechanisms of Parkinson's will seek out links between environmental and genetic triggers of disease. This project will investigate the mechanisms through which neurotoxins cause neurodegeneration and how these pathways interact with known genetic factors such as LRRK2, a leading genetic cause of PD.
"It is an honor to be selected by The Michael J. Fox Foundation to participate in this unique collaborative project. Our work focuses on the commonalities of Parkinson's disease causation, whether it's due to genetic mutations or environmental exposures. We hope that by defining these common mechanisms, we will know how best to intervene therapeutically to slow or stop disease progression," said Principal Investigator J. Timothy Greenamyre, MD, PhD, of the Pittsburgh Institute for Neurodegenerative Diseases and the University of Pittsburgh.
- Foundational Data Initiative: Mapping Genetic Effects in Parkinson's will grow nerve cells and use advanced "omics" techniques (e.g., genomics, proteomics, metabolomics) to map how various genetic changes lead to cellular and molecular changes associated with PD.
“We are pleased to be part of a truly multidisciplinary group that brings together experts with a common goal to produce foundational data that will accelerate the field’s ability to understand the disease processes and to find logical places for intervention,” said Principal Investigator Andrew Singleton, PhD, of the National Institute on Aging, part of the National Institutes of Health.
- Aging and Parkinson's Disease will investigate how cellular aging and related DNA and mitochondrial damage contributes to neurodegeneration.
“I’m honored and extremely grateful to MJFF for this award. It gives us the opportunity to do the kind of innovative, interdisciplinary science that can lead to conceptual breakthroughs and identification of the shortest possible path to a real strategy for stopping Parkinson’s disease,” said Principal Investigator D. James Surmeier, PhD, of Northwestern University.
Read more on this program and the complexity of Parkinson's disease biology.